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We describe the development and implementation of a decision support system for the optimization of passenger flow
by trading off service quality and labour costs at an airport. The system integrates a simulation module with an
optimization module that requires that Dantzig’s labour scheduling problem be solved in the order of thousands of
times. We developed a customized scatter search to give the system the capability of finding high-quality solutions to the
labour scheduling problems in short computational times. Our experiments verify that our scatter search
implementation meets the needed requirements.
Journal of the Operational Research Society (2005) 56, 649–658. doi:10.1057/palgrave.jors.2601859
Published online 17 November 2004

Keywords: labour scheduling; scatter search; GRASP; path relinking

Introduction

An operational problem in many service organizations

is to determine the number of employees—and their

work schedules—needed to minimize labour costs, while

reaching a desired level of service quality. This problem

is known in the literature as the labour scheduling

problem. Thompson1 states the importance of this problem

as follows:

Labor scheduling—the process of matching, over the operating

day, the number of employees working to the number of

employees needed to provide the desired level of customer

service—is frequently a large determinant of service organiza-

tion efficiency.

The development of efficient labour schedules has

long been recognized as an important factor for improv-

ing productivity in services. Many service organizations

deal with demands that vary significantly from hour-to-

hour and day-to-day. If these organizations lack the capacity

to satisfy demand as it occurs, they may incur lost sales or

other shortage costs. Similarly, if their service capacity

exceeds the current rate of demand, the excess capacity may

go to waste.

Dantzig2 was the first to model the labour scheduling

problem as a mathematical programme. His classical integer

programming formulation is as follows:

min
Xm
j¼1

cjxj ð1Þ

s:t: Xm
j¼1

aijxjXri; i ¼ 1; . . . ; h ð2Þ

xjX0; xj 2 Z ð3Þ

where

h the number of work periods in the planning horizon

(normally expressed in hours)

M the master set of allowable tours (shifts) { j¼ 1,y,m}

aij ¼
(
1; if i is a work period in tour ðshiftÞj;

i ¼ 1; . . . ; h and j ¼ 1; . . . ;m
0; otherwise

cj cost of having an employee working in tour (shift)

j, j¼ 1,y,m
ri the number of employees required in period

i, i¼ 1,y, h
xj the number of employees assigned to tour (shift)

j, j¼ 1,y,m

The objective of this model is to minimize the cost of the

scheduled shifts in the planning horizon (eg, a day or a

week), subject to the restriction that the employee require-

ments in every period are satisfied. Extensions to this labour

scheduling model have been proposed by Betchold and

Jacobs3,4 who implicitly matched meal breaks to explicitly

represent shifts. Betchold et al5 rigorously evaluated a wide

range of scheduling heuristics. Implicit modelling has been

used by Thompson6 for scheduling employees having limited

availability and by Thompson7 for scheduling work in

services over which management has some temporal control.
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Since service organizations (whether public or private)

commonly deal with a high level of scheduling flexibility,

the number m of allowable shifts tends to be large.

Bartholdi8 showed that this family of labour scheduling

problems is NP-complete, motivating the development

of both conventional stand-alone heuristics and meta-

heuristic solution procedures. Several successful service

organizations, including LL Bean,9–11 United Airlines,12

and the San Francisco Police Department13 have obtained

significant performance improvements after adopting opti-

mization techniques to deal with their labour scheduling

problems.

The most effective conventional heuristics for labour

scheduling in the literature combine linear programming and

local search.5,14,15 The local search procedures in most

conventional labour scheduling heuristics do not allow the

search to cross the feasibility boundary and visit infeasible

solutions. Infeasible solutions in Dantzig’s model are such

that for at least one period the number of scheduled

employees is strictly less than the number of required

employees. In other words, the solution is such that at least

one of the constraints (2) is violated. When an optimization

procedure is not allowed to cross the feasibility boundary,

the search paths are confined to the feasible region of the

search space, which may limit the procedure’s ability to find

improved solutions. See, for example, Glover and Kochen-

berger16 and Laguna et al.17

Metaheuristic procedures have also been developed for a

variety of labour scheduling problems. Specifically, Brusco

and Jacobs,18,19 Brusco et al,20 and Thompson21 developed

procedures based on simulated annealing. Easton and

Mansour22 experimented with genetic algorithms. Glover

and McMillan,23 Taylor and Huxley,13 Easton and Rossin,24

Downsland,25 and Alvarez-Valdes et al26 proposed tabu

search procedures.

In the present development, we report on a component of

a decision support system designed to trade off labour costs

and service quality (as measured by waiting time) at an

airport. Specifically, the system has been developed for the

Madrid–Barajas Airport, where the labour costs are

associated with security control and check-in personnel.

The system is such that, for each desired level of service, it

carries out the following steps:

1. Optimization of a simulated model of the airport to

establish the labour requirements needed at check-in and

security control points to obtain the targeted service level.

2. Given the requirements obtained in the previous step, a

labour scheduling problem is solved for each check-in and

security control point accounting for the shift sets

established for different types of workers.

The characteristics of the problem create two conflicting

objectives: minimizing costs and maximizing quality of

service. For instance, if the labour costs were reduced

(lowering the number of workers), there would be an

increase in passenger waiting times, and thus service quality

would deteriorate. In such a situation, being able to estimate

labour costs associated with different levels of service quality

or vice versa—that is, estimating quality of service for a given

labour budget—is of great interest to the decision maker. To

achieve this, the two steps above would have to be executed

many times as several combinations of service levels and

budgetary scenarios are investigated. In addition, it is

necessary to execute the entire process whenever changes

take place in the normal operation of the airport, due, for

instance, to flight cancellations and changes in time

schedules.

Executing the two steps above within an interactive

decision support system requires fast evaluation pro-

cedures. These steps have to be executed efficiently using

methods that can provide approximately 100 high-quality

solutions in about 3h. Each solution represents a combina-

tion of labour cost and service level that the decision

maker is considering. This means that each solution

must be found in at most 108 s. The first phase (simula-

tion-optimization) requires about 1min of computational

time, leaving approximately 48–50 s to complete the

second phase. In the second phase, a labour scheduling

problem must be solved for each of 50–60 stations. Hence,

a high-quality solution to the labour scheduling problem

must be found in less than a second. All these computational

times are estimated considering a Pentium 4 machine at

2.53GHz.

The main contribution of this paper relates to step 2 and

consists of a metaheuristic method that searches for

solutions to the labour scheduling problem and that can

be embedded in an interactive decision support system for

the optimization of passenger flow. We opted for metaheur-

istic strategies rather than optimal methods because of the

need to find high-quality solutions fast even though

optimality of the solutions may not have been confirmed.

The labour scheduling problem to be solved for each station

(both check-in and security) fits the Dantzig model. In this

case, all the shifts have the same cost, hence, we can simply

make cj¼ 1 for all j. Our metaheuristic implementation
exploits this special structure to produce high-quality

solutions fast even when tackling problems of realistic sizes,

which involve a large number of shifts and a planning

horizon of up to 1 week.

The remainder of this paper is organized as follows.

The next section describes the metaheuristic procedure

based on the scatter search methodology. The subsequent

section deals with determining the values for the search

parameters associated with the procedure described in the

previous section. The section thereafter discusses the results

obtained from the computational testing, including com-

parative tests with other methods. The last section shows an

example of the decision support system in which our

metaheuristic procedure is embedded and then we draw

some conclusions.
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Solution approach

The solution approach we have developed is an adaptation

of the scatter search (SS) methodology. SS is an instance of

the so-called evolutionary methods, with the main distinc-

tion that its mechanisms for searching are not based solely

on randomization. More about the origins and multiple

applications of SS can be found in Glover,27 Laguna28 and

Laguna and Martı́.29

SS is characterized by the use of a Reference Set (RefSet)

of solutions. At each step of the solution procedure,

reference solutions are combined to generate new solutions,

which in turn are used to update the current RefSet

according to some systematic rules. For our labour

scheduling problem, we have developed a version of SS that

uses a static update of the RefSet. For more details on

alternative SS designs, the reader is referred to the book by

Laguna and Martı́.29 Figure 1 shows a general structure of

our SS implementation in the form of a pseudocode.

The size of P is denoted by PSize (step 1). In addition,

b¼ b1þ b2 denotes the size of the RefSet. In order to build

the initial RefSet (step 3), we start by selecting the best,

according to the objective function value, b1 solutions in P.

Then, the remaining b2 elements are added to increase the

diversity of the initial RefSet. We measure the ‘diversity’ of a

candidate solution x in relation to those elements already in

RefSet. In particular, we calculate the minimum distance

(MinDist) between a candidate solution x and all the

solutions x0 in the reference set:

MinDistðx; RefSetÞ ¼ min dðx; x0Þ : x0 2 RefSetf g

where d(x,x0)¼
P

j|xj	xj0|. The solution xAP that max-
imizes MinDist(x, RefSet) is added to RefSet and deleted

from P. The process is repeated until b2 solutions are added

to RefSet.

The updating of RefSet (step 4.4) is carried out by taking

into account only the quality of the solutions. In other

words, a new trial solution x that improves the objective

function of the worst reference solution xb is included in

RefSet. Since the RefSet is ordered according to solution

quality, the worst reference solution is always the last one in

the set and is denoted by xb.

Diversification method

Our diversification method is based on GRASP construc-

tions. GRASP (greedy randomized adaptive search proce-

dure) is a heuristic that constructs solutions with controlled

randomization and a greedy function. Most GRASP

implementations also include a local search that is used to

improve upon the solutions generated with the randomized

greedy function. GRASP was originally proposed in the

context of a set covering problem.30 Details of the

methodology and a survey of applications can be found in

Feo and Resende31 and Pitsoulis and Resende.32

The greedy function that we have selected in our current

setting is denoted by Dj and represents the number of
infeasible periods included in shift j. The procedure starts

from a solution x obtained by rounding to the closest integer

the solution to the continuous relaxation of Dantzig’s model.

The rounded solution xr is integer but may be infeasible with

respect to meeting the labour requirements in every period of

the planning horizon. Figure 2 shows a pseudocode of the

Diversification method.

The a parameter (0pap1) controls the level of randomi-
zation for the greedy selections. Randomization decreases as

the value of a increases. When a¼ 1 the candidate list CL
contains only one element, the shift with the maximum

number of infeasible periods. When a¼ 0 all shifts with at
least one infeasible period are members of the candidate list

CL. The controlled randomization from choosing an a-value
that is strictly between 0 and 1 results in a sampling

procedure where the best solution found is typically better

than the one found by setting a to either 1 or 0. A judicious
selection of the value of a provides a balance between
diversification and solution quality.

Improvement method

Our improvement method, used in steps 2 and 4.3 of

Figure 1, is a local search procedure with a neighbourhood

structure defined by the compound moves described in this

section. We start by noticing that the objective function of

our labour scheduling problem is such that any improving

move involves eliminating workers from one or more shifts.

1. Generate an initial set P of solutions with a Diversification Generation Method 
2. Improve these solutions with an Improvement Method 
3. Build an initial RefSet from the improved P set
4. Do until RefSet converges (i.e., no new trial solutions are admitted to the set) 

4.1. Obtain all pairs of reference solutions for which at least one of the two 
solutions is new in the pair 

4.2. Apply a Combination Method to these subsets and obtain new trial solutions 
4.3. Improve the new trial solutions with an Improvement Method
4.4. Update RefSet considering both the current reference solutions and the new 

trial solutions 

Figure 1 High-level view of the SS implementation.
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This means that feasible solutions of high quality tend to be

near or at the feasibility boundary. Infeasible solutions are

reached when the elimination of workers results in a labour

shortage in any period during the planning horizon.

Preliminary experimentation showed that a higher level of

performance is achieved when the improvement method is

allowed to follow a search trajectory that includes both

feasible and infeasible solutions. Therefore, the procedure

that we have developed crosses the feasibility boundary in

both directions. When the search crosses the boundary

toward the infeasible region, a projection mechanism is used

to map infeasible solutions onto feasible ones. The projec-

tion procedure, based on the ideas of Brusco and Jacobs,18 is

quite simple. It consists of executing the steps in Figure 2

starting from the infeasible solution x and setting a to 1.
The procedure to recover feasibility is employed within a

move mechanism that consists of a sequence of changes

involving the elimination of a worker from a shift. Hence, a

single compound move is defined by a collection of simple

moves. The mechanism, which is also inspired in some ideas

by Brusco and Jacobs,18 is illustrated in Figure 3. This shows

the sequence of simple moves taken from a seed solution x0.

The kmax parameter is used to control the number of simple

moves that are performed within the compound move.

Each simple move produces a new solution x0(k), for

k¼ 1,y, kmax. Each infeasible x0(k) solution is projected to
the feasibility region using the projection mechanism. After

kmax simple moves, the best feasible solution x
0 0(k) is chosen.

The procedure is reinitiated by making x0¼ x0 0(k).

Combination method

New solutions are generated from combining pairs of

reference solutions (step 4.2 in Figure 1). The number of

solutions generated from each combination depends on the

relative quality of the solutions being combined. Let xp and

xq be two reference solutions being combined, where poq.

We work with a reference set that is ordered in a way that x1

is the best solution and xb is the worst. Then, the number of

solutions generated from each combination is:

3 if ppb1 and qpb1

2 if ppb1 and q4b1

1 if p4b1 and q4b1

1. x = rounded LP solution and ∑
=

=
m

j
jiji xaw

1

 for i = 1, …, h

2. Do until wi  ri   i = 1, …, h

2.1. Calculate ∑
<

= 
irwi

ijj a
/

, j = 1..m

2.2. Calculate  max = max { j : j = 1, …, m} and  min = min { j : j = 1, …, m} 
2.3. Build CL = { j :  j    max + (1- )  min, j = 1, …, m } 
2.4. Choose j* randomly from CL and make 1** += jj xx

2.5. Update *ijii aww += , i = 1, …, h

1. x = rounded LP solution and ∑
=

=
j

iw
1

i h

2. Do until wi ≥ ri ∀ i = 1, …, h

2.1. Calculate ∑
<

∆
i rwi

ijj a
/

, j = 1..m

2.2. Calculate ∆  = max { j : j = 1, …, m} and ∆  = min {∆ j : j = 1, …, m} 
2.3. Build CL = { j : ∆

∆
j ≥ α ∆max + (1-α  ∆ min, j = 1, …, m

2.4. Choose j* randomly from CL 1** += jj xx

2.5. Update *ijii aww += , i = 1, …, h

Figure 2 Diversification generation method based on GRASP constructions.

x0

x0(1)

x0(2)

x0 (3)
x0(kmax)

x''(1) x''(2)

x''(3)

x''(kmax)
Feasible region

Feasibility Boundary

Figure 3 Compound move with projections.
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Hence, every pair of reference solutions is combined to

generate new solutions but not all pairs generate the same

number of trial solutions. The combination method is based

on a strategy known as path relinking, which was originally

proposed in the context of tabu search33 and has also been

used in scatter search29 as well as GRASP.34,35

The underlying premise of path relinking is that in the

path between two good solutions, other solutions of similar

quality (and perhaps better) may be found. The basic idea is

to build a path to join two solutions: an initiating solution

and a guiding solution. This path generates a number of

intermediate solutions that are projected and improved using

the improved method described previously. In our imple-

mentation, the intermediate solutions are generated as

equidistant as possible from each other.

Figure 4 shows a schematic representation of the path

relinking process. The initiating solution is xp and the

guiding solution is xq. During the relinking process,

solutions x0 and x0 0 are chosen for the application of

the improvement method, which includes the projection

mechanism. The application of the improvement method

results in the improved solutions denoted as x* and x** in

Figure 4.

The path between xp and xq is built by concentrating on

the shifts that have different values (number of employees)

in both solutions. Let an intermediate solution in the

path between xp and xq be x, then initially x¼xp. In the

path relinking process, we first consider the set of shifts

E¼ {j : xj4xj
q} and find j* such that b(j*)¼maxjAE{b(j)},

where

bðjÞ ¼ jfi : aij ¼ 1; wiXri þ 1gj

As long as Ea+, one worker is removed from
shift j*, that is, xj� ¼ xj� 	 1. When E¼+, we consider
the set of shifts F¼ {j : xjoxj

q} and find j* such that

Dj� ¼ maxj2F fDjg, where Dj is the function defined in
Figure 2. As long as Fa+, one worker is added to shift
j*, that is, xj� ¼ xj� þ 1. In this way, the intermediate
solution x moves closer to xq at each step of the relinking

process.

Parameter fine tuning

One of the most time-consuming tasks in the development of

metaheuristic procedures for optimization is the tuning of

search parameters. Dı́az and Laguna36 propose a semi-

automated parameter tuning system called CALIBRA that

employs statistical analysis techniques and a local search

procedure to create a systematic way of fine-tuning

algorithms. The goal of CALIBRA is to provide a system

to fine-tune algorithms, where a user needs only to specify a

range for each parameter to be tuned, a training set of

instances and a measure of performance. The quality of a set

of parameter values is tested on the specified set of problem

instances. CALIBRA is available at http://opalo.etsiig.

uniovi.es/Badenso/file_d.html, where a user manual can
also be found.

Our complete set of test problems consists of 800

instances. We randomly selected a relatively small training

set of eight problems, because we considered that this sample

would be representative and that the parameter values found

with CALIBRA would also perform well when applied to

the entire test set. The parameters to be adjusted were a
in the (0.1, 0.9) range, kmax in the (3, 7) range, PSize in

the (12, 20) range, b1 in the (1, b	1) range where b ¼
min 10; PSize=2b cð Þ and b2¼ b	b1. After 100 CPU minutes
on a Pentium III machine at 600MHz, CALIBRA obtained

the following parameter values: a¼ 0.7, kmax¼ 6, PSize¼ 14
and b1¼ 3. We used these parameter values for all of the
experiments reported in the next section.

Computational experiments

In order to assess the efficiency of our SS procedure, a series

of tests were carried out to compare its performance with the

Simulated Annealing procedure (SA) described in the paper

of Brusco and Jacobs,19 the Tabu search algorithm by

Alvarez-Valdés et al,26 and the results obtained from solving

Dantzig’s model with CPLEX 8.0.

Four sets consisting of 200 artificial problems each were

generated. The problem generator is described in the

Appendix. In sets I and II, the number of shifts was set to

m¼ 221, while in sets III and IV the number of shifts was set
to m¼ 320. In all cases, the number of periods was h¼ 168.
Since we seek a fast procedure to solve the labour scheduling

problem repeatedly, the total solution times under con-

sideration were 0.4 and 1 s. The tests were carried out on a

Pentium 4 at 2.53GHz and 512MB of RAM. In addition, in

order to measure the quality of the different solutions, a

lower bound for each problem instance was obtained with a

2-min CPLEX run.

The proposed method described in this paper, as well as of

the procedures by Brusco and Jacobs,19 and Alvarez-Valdés

et al,26 were programmed in PASCAL, using the compilers

BORLAND PASCAL 7.0 and BORLAND DELPHI 5.0.

Tables 1–3 summarize the experimental results. Table 1

contains the following information:

� For each set of problems, the number of instances that
have been solved optimally executing CPLEX during

2min (Known Opt).

x p xqx' x"

x* x**

Improvement
Method

Figure 4 Path relinking to generate new trial solutions.
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� Among the instances that CPLEX solved optimally in
2min, the number of instances (Opt) that were solved

optimally by each alternative and for each computational

time considered (0.4 and 1 s). The table also shows the

average deviation from optimality (Dev) for the problems

for which optimal solutions are known.

� Among the instances that CPLEX did not solve optimally
in 2min, the mean percentage deviation from the best

lower bound (LBDev) is shown.

Table 2 shows, for each set of problems and for each

computational time under consideration, the number of

times that each procedure obtained the best solution among

all alternatives (Best), and the average objective function

values (ObjVal).

Finally, Table 3 shows, for each set of problems and for

each computational time under consideration, the number of

times that Cplex obtained better solutions than scatter

search (column labelled Cplex), the number of times that SS

obtained better solutions that CPLEX (column labelled SS)

and the number of times that both procedures obtained the

same objective function value (Draws).

The following observations can be made regarding the

results reported in Tables 1–3:

� Our proposed SS procedure outperforms the alternative
metaheuristics that we used for comparison. The perfor-

mance of SS is superior regardless of the problem type

Table 1 Number of optima and percent deviation

0.4 s 1.0 s

Type Known opt Cplex SS TS SA Cplex SS TS SA

I 65 Opt 7 25 6 0 17 31 6 0
Dev 1.4 0.91 1.45 3.74 1.09 0.76 1.43 3.73
LBDev 3.33 2.58 3.28 5.2 3.05 2.43 3.24 5.18

II 81 Opt 14 28 8 0 25 33 9 0
Dev 1.34 0.93 1.5 3.73 0.99 0.85 1.48 3.72
LBDev 3.29 2.51 3.37 5.35 3.02 2.39 3.33 5.32

III 41 Opt 0 11 2 0 5 13 2 0
Dev 6.79 1.11 1.64 4.14 1.34 1.04 1.64 4.12
LBDev 7.92 2.9 3.62 5.76 3.66 2.79 3.62 5.71

IV 46 Opt 0 8 4 0 10 10 4 0
Dev 6.81 1.19 1.48 4.1 1.14 1.11 1.47 4.1
LBDev 7.46 2.83 3.63 5.49 3.46 2.7 3.61 5.49

Table 2 Number of best solutions found and average objective function values

0.4 s 1.0 s

Type Cplex SS TS SA Cplex SS TS SA

I ObjVal 68.73 68.325 68.745 70.15 68.555 68.235 68.735 70.145
Best 118 196 112 10 132 195 101 9

II ObjVal 68.285 67.91 68.36 69.815 68.095 67.85 68.35 69.81
Best 124 195 111 8 144 193 100 8

III ObjVal 68.73 65.33 65.74 67.19 65.71 65.275 65.74 67.18
Best 0 198 121 10 112 193 104 8

IV ObjVal 68.285 65.08 65.48 66.78 65.35 65.02 65.475 66.78
Best 3 197 113 12 126 191 96 9

Table 3 Performance of SS compared to Cplex

0.4 s 1.0 s

Type Cplex SS Draws Cplex SS Draws

I 3 81 116 5 68 127
II 5 76 119 7 56 137
III 0 200 0 6 87 107
IV 0 197 3 7 72 121
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and the computational time. All statistics (number of

optima, number of best, percent deviation from optima

and from lower bounds) reported in Tables 2 and 3 favour

SS over TS and SA.

� Solving the MIP formulation with Cplex is the second best
alternative, except for type III and IV problems when the

computational time is 0.4.

� SS is capable of finding solutions of high quality, as
indicated by the average deviations from optima, which

range between 0.76 and 1.19%.

To conclude this section, we present the results of two

statistical tests that compare the performance of the

proposed SS procedure and Cplex. The first is the well-

known t-Student’s test for differences of means and the

second is a paired test that ignores instances in which both

methods obtain the same results (reported as Draws in

Table 3). Specifically, we define

Ai the objective function value obtained by

Cplex in the ith problem instance

Bi the objective function value obtained by

SS in the ith problem instance

and consider the following sets of hypotheses for the t-test

and the paired test, respectively:

H0 : �AA	 �BBp0
H1 : �AA	 �BB40

H0 : Pr Ai4Bi=AiaBið Þp0:5
H1 : Pr Ai4Bi=AiaBið Þ40:5

Table 4 shows the t and Z statistics obtained for each type

of problem instances and length of run. The table also shows

the tail probability p.

The results in Table 4 indicate that the t-test detects

significant difference between the performance of SS and

Cplex for type II and IV problems when the executing time is

limited to 0.4 s. The test does not detect significant

differences in performance in any of the other cases. The

results of the paired test are such that, when draws are

ignored, the probability that SS obtains a better solution

than Cplex is significantly larger than 0.5.

In sum, although SS always obtains an average objective

function value that is better than the one obtained by

running Cplex, these average values are in general not

significantly better (as indicated in Table 4). This is due to all

the cases where Cplex and SS end up finding the same

solution. However, if these cases are ignored, then the

probability that SS gives better results than Cplex signifi-

cantly exceeds 0.5.

The DSS

In this section, we provide a high-level view of how the

decision support system for the optimization of passenger

flow works. Figure 5 provides a schematic representation of

the steps that are performed to determine the number of

employees that will be needed in each station in the airport

in order to meet a desired level of service. The steps in

Figure 5 are performed for each station and for each service

Table 4 Results of the Student’s t-test and paired test

Type I Type II Type III Type IV

t p t p t p t p
t-test
0.4 s 0.2383 0.4058 0.2204 0.4128 2.0788 0.0188 1.9562 0.0252
1.0 s 0.188 0.4254 0.1439 0.4428 0.2768 0.391 0.2095 0.417

Paired test Z p Z p Z p Z p
0.4 s 8.51 o0.0001 7.89 o0.0001 14.1421 o0.0001 13.72 o0.0001
1.0 s 7.37 o0.0001 6.17 o0.0001 8.4 o0.0001 7.31 o0.0001

Desired
service levels

Optimizer

Simulator

Labor
requirements

Estimated
service levels

Labor Scheduling

Set of shifts Labor requirements

Figure 5 How the sytems works.

S Casado et al—Heuristical labour scheduling 655



www.manaraa.com

level that the decision maker would like to explore. Service

level in this context typically is defined in terms of the

percentage of passengers that go through a particular station

within a predetermined time. Service level may be specified

also as a mean waiting time.

Figure 5 shows that the process at each station involves

first the optimization of a simulation model. The model

mimics the behaviour of the station under consideration and

the optimizer is such that it attempts to find the labour

requirements that would meet the desired level of service.

Once the labour requirements have been established, then

the labour scheduling problem is solved to determine the

actual labour costs given a set of allowed shifts for each

station. The process is performed for every station in the

airport and then a final simulation is executed using the

number of employees and shifts determined by the solution

of the labour scheduling problem. The final simulation gives

an estimate of total labour costs and service levels achieved

by the entire operation. This final level of service will be at

least the same or slightly better than the desired level

specified as an input.

The system facilitates decision-making at an airport

because the final output provides a set of possible

alternatives regarding labour costs and service levels. To

illustrate this, consider a problem based on the typical traffic

at the Barajas Airport in Madrid:

� 75 000 daily passengers
� 770 daily flights (arrivals and departures)
� 20 000 connections
� 36 arrival gates
� 18 luggage pick-up points
� 90 departure gates
� 50 airlines (and therefore 50 check-in points) with an
average of 12 check-in desks per airline

� 9 security control points at arrivals, with 20 gates
available for each one

� 9 security control points at departures, with 16 gates
available for each one

For this illustration, we consider that the duration of the

service follows an exponential distribution with the following

mean values:

� 60 s at check-in counters
� 6 s at arrival security controls
� 30 s at departure security controls

Although we have used these mean values for all

passengers, they in fact depend on the type of passenger

(eg, national vs international, Madrid–Barcelona link, etc.).

Finally, 150 weekly shifts have been identified for the check-

in personnel and 180 for the security personnel.

Figure 6 shows one of the outputs obtained from using the

proposed DSS on the data summarized above. This figure

depicts the trade-off between labour costs (given, in this case,

by number of employees) and service quality, as measured

by the mean waiting time. The trade-off is such that, for

instance, to reduce the average waiting time from 40 to

9min, the number of employees must be increased from 243

to 443. A reduction of the average waiting time from 3 to

2min requires going from 675 employees to 1235. Hence, the

plot in Figure 6 can be used either to predict a service level

for a given labour cost or to estimate the necessary budget

given a desired level of service.

When tackling this problem, the DSS makes 68 calls to the

SS procedure that finds solutions to the labour scheduling

problem (1 call per station). If the system is used to construct

a plot such as the one shown in Figure 5 with 100 solutions,

then the labour scheduling problem needs to be solved 6800

times. This justifies the need for a procedure, such as the one

based on SS that we have described in this paper, capable of

quickly finding high-quality solutions to the labour schedul-

ing problem.

Conclusions

The labour scheduling problem is highly relevant in the

literature because of the vast amount of applications it has in

the real world, both for public institutions and private

companies. Many models and versions have been analysed

and a large variety of solutions methods have been

proposed.

However, we have not found procedures in the literature

capable of finding high-quality solutions within a very

limited computational time. Some practical applications,

such as the one described in this paper, require solving a

large number of labour scheduling problems as part of an

overall optimization system. The contribution of this paper

is the development of a method based on the scatter search

metaheuristic that is capable of providing high-quality

solutions in very short computational times for moderate-

to large-size problems.
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Figure 6 Trade-off between labour cost and average waiting
time.
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Appendix

Problem instance generator

The problem instance generator used to create data for our

computational experiments works as follows:

The generator considers a 1-week planning horizon, that

is, h¼ 168. For sets types I and II, m¼ 221 and for sets type
III and IV m¼ 320. The a coefficients are the same in all
types I and II instances and are randomly generated

considering 8-h shifts. Therefore, the only difference between

types I and II instances is in the set of requirement values

(ie, they use different r-values but the same set of shifts). Sets

of types III and IV are also identical except for the

requirement values.

To generate the r-vectors, seven daily demand patterns

have been considered. Three patterns are selected to create a

periodic weekly pattern for problem types I and II. Let P1,

P2 and P3 be the chosen patterns (out of the seven available

ones). Then, types I and II problems would have P1 assigned
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to Monday, P2 to Tuesday, Wednesday and Thursday

and P3 to Friday, Saturday and Sunday. The result

week would be represented as (P1, P2, P2, P2, P3, P3, P3).

This scheme results in 73¼ 343 different weeks, from
which 200 are randomly chosen for the set of type I and II

problems.

Types II and IV problems are generated by perturbing the

patterns corresponding to Wednesday, Thursday, Saturday

and Sunday. In particular, a random value between 	3 and
3 is added to the requirements corresponding to periods

49–96 and 121–168. Hence, the requirements for problems

types II and IV are not periodical.
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